xxxxxxxxxx
64
let img;
let poseNet;
function preload() {
// load an image for pose detection
img = loadImage('data/runner.jpg');
}
function setup() {
createCanvas(640, 360);
image(img, 0, 0);
poseNet = ml5.poseNet(modelReady);
}
// when poseNet is ready, do the detection
function modelReady() {
select('#status').html('Model Loaded');
// If/When a pose is detected, poseNet.on('pose', ...) will be listening for the detection results
poseNet.on('pose', function (poses) {
if (poses.length > 0) {
drawSkeleton(poses);
drawKeypoints(poses);
}
});
// When the model is ready, run the singlePose() function...
poseNet.singlePose(img);
}
// The following comes from https://ml5js.org/docs/posenet-webcam
// A function to draw ellipses over the detected keypoints
function drawKeypoints(poses) {
// Loop through all the poses detected
for (let i = 0; i < poses.length; i++) {
// For each pose detected, loop through all the keypoints
let pose = poses[i].pose;
for (let j = 0; j < pose.keypoints.length; j++) {
// A keypoint is an object describing a body part (like rightArm or leftShoulder)
let keypoint = pose.keypoints[j];
// Only draw an ellipse is the pose probability is bigger than 0.2
if (keypoint.score > 0.2) {
fill(255);
stroke(20);
strokeWeight(4);
ellipse(round(keypoint.position.x), round(keypoint.position.y), 8, 8);
}
}
}
}
// A function to draw the skeletons
function drawSkeleton(poses) {
// Loop through all the skeletons detected
for (let i = 0; i < poses.length; i++) {
let skeleton = poses[i].skeleton;
// For every skeleton, loop through all body connections
for (let j = 0; j < skeleton.length; j++) {
let partA = skeleton[j][0];
let partB = skeleton[j][1];
stroke(255);
strokeWeight(1);
line(partA.position.x, partA.position.y, partB.position.x, partB.position.y);
}
}
}