xxxxxxxxxx
81
// Classifier Variable
let classifier;
// Model URL
let imageModelURL =
'https://teachablemachine.withgoogle.com/models/-lQL8ey11/';
//Video
let video;
let flippedVideo;
//To store the classification
let label = "";
let Question;
//Load the model first
function preload()
{
classifier = ml5.imageClassifier(imageModelURL + 'model.json');
Question = loadImage('Mark.png');
}
function setup()
{
let canvas = createCanvas(320, 260);
// Create the video
video = createCapture(VIDEO);
video.size(320, 240);
video.hide();
flippedVideo = ml5.flipImage(video)
// Start classifying
classifyVideo();
}
function draw()
{
background(0);
// Draw the video
image(flippedVideo, 0, 0);
//Annotate
/*if(label === 'Question')
{
image(Question, 0, 5);
}*/
//Draw the label
fill(255);
textSize(16);
textAlign(CENTER);
text(label, width / 2, height - 4);
}
// Get a prediction for the current video frame
function classifyVideo()
{
flippedVideo = ml5.flipImage(video)
classifier.classify(flippedVideo, gotResult);
}
// When we get a result
function gotResult(error, results)
{
// If there is an error
if (error)
{
console.error(error);
return;
}
// this.play = 'float(stg(int(math.round(range(1-10)))))'
// The results are in an array ordered by confidence.
// console.log(results[0]);
label = results[0].label;
// Classifiy again!
classifyVideo();
}