xxxxxxxxxx
73
// Classifier Variable
let classifier;
// Model URL
let imageModelURL = 'https://teachablemachine.withgoogle.com/models/QcSZp1lft/model.json';
// Video
let video;
let flippedVideo;
// To store the classification
let label = "";
let question;
let questionFade = 255;
// Load the model first
function preload() {
classifier = ml5.imageClassifier(imageModelURL);
question = loadImage('question.png');
}
function setup() {
createCanvas(640, 480);
// Create the video
video = createCapture(VIDEO);
video.size(640, 480);
video.hide();
flippedVideo = ml5.flipImage(video)
// Start classifying
classifyVideo();
}
function draw() {
background(0);
// Draw the video
image(flippedVideo, 0, 0);
if (label == 'Question') {
questionFade = 255;
}
questionFade -= 10;
if (questionFade > 0) {
//tint(255,questionFade);
image(question, 0, 0);
}
// Draw the label
// fill(255);
// textSize(16);
// textAlign(CENTER);
// text(label, width / 2, height - 4);
}
// Get a prediction for the current video frame
function classifyVideo() {
flippedVideo = ml5.flipImage(video)
classifier.classify(flippedVideo, gotResult);
}
// When we get a result
function gotResult(error, results) {
// If there is an error
if (error) {
console.error(error);
return;
}
// The results are in an array ordered by confidence.
// console.log(results[0]);
label = results[0].label;
// Classifiy again!
classifyVideo();
}