xxxxxxxxxx
88
let video;
let faceapi;
let detections = [];
let storedFaces = []; // Stores recognized face landmarks
function setup() {
createCanvas(640, 480);
video = createCapture(VIDEO);
video.size(width, height);
video.hide();
// Load FaceAPI models
faceapi = ml5.faceApi(video, { withLandmarks: true, withDescriptors: true }, modelLoaded);
}
function modelLoaded() {
console.log("FaceAPI model loaded!");
detectFace();
}
function detectFace() {
faceapi.detect(gotResults);
}
function gotResults(err, result) {
if (err) {
console.error(err);
return;
}
detections = result;
if (detections.length > 0) {
let descriptor = detections[0].descriptor; // Unique 128D face vector
let match = findMatchingFace(descriptor);
if (match === null) {
storedFaces.push(descriptor);
console.log("New face stored! Total stored:", storedFaces.length);
} else {
console.log("Recognized a stored face!");
}
}
// remove old faces to clear memory
if (storedFaces.length > 10) {
for (let i; i<9; i++){
storedFaces.shift();
}
}
detectFace(); // Loop face detection
}
function findMatchingFace(newDescriptor) {
for (let stored of storedFaces) {
let similarity = cosineSimilarity(stored, newDescriptor);
if (similarity > 0.9) { // Threshold for recognition
return stored;
}
}
return null;
}
function cosineSimilarity(vec1, vec2) {
let dot = 0, mag1 = 0, mag2 = 0;
for (let i = 0; i < vec1.length; i++) {
dot += vec1[i] * vec2[i];
mag1 += vec1[i] ** 2;
mag2 += vec2[i] ** 2;
}
return dot / (Math.sqrt(mag1) * Math.sqrt(mag2));
}
function draw() {
image(video, 0, 0, width, height);
if (detections.length > 0) {
let points = detections[0].landmarks.positions;
for (let p of points) {
fill(0, 255, 0);
noStroke();
ellipse(p._x, p._y, 5, 5);
}
}
}