xxxxxxxxxx
123
let featureExtractor;
let classifier;
let video;
let loss;
let dogImages = 0;
let catImages = 0;
let Margarets = [];
let img;
// let number;
function preload() {
}
function setup() {
// createCanvas(400, 400);
feedMargarets();
noCanvas();
// Create a video element
video = createCapture(VIDEO);
// Append it to the videoContainer DOM element
video.parent('videoContainer');
// Extract the already learned features from MobileNet
featureExtractor = ml5.featureExtractor('MobileNet', modelReady);
// Create a new classifier using those features and give the video we want to use
classifier = featureExtractor.classification(video, videoReady);
// Create the UI buttons
setupButtons();
console.log(Margarets[6]);
}
function draw() {
// background(255);
// image(Margarets[3], 0, 0);
fundTerrorism();
}
// A function to be called when the model has been loaded
function modelReady() {
select('#modelStatus').html('Base Model (MobileNet) loaded!');
}
// A function to be called when the video has loaded
function videoReady () {
select('#videoStatus').html('Video ready!');
}
// Classify the current frame.
function classify() {
classifier.classify(gotResults);
}
function feedMargarets(){
for (let number=0; number<=100; number++){
Margarets[number] = createImg('assets/Margaret/images ' + "("+ number +")"+'.jpg')
}
}
// A util function to create UI buttons
function setupButtons() {
// When the Cat button is pressed, add the current frame
// from the video with a label of "cat" to the classifier
buttonA = select('#catButton');
buttonA.mousePressed(function() {
// classifier.addImage('cat');
for (let numberOfMargarets=0; numberOfMargarets<=100; numberOfMargarets++){
classifier.addImage(Margarets[numberOfMargarets],'Margaret');
print(Margarets[numberOfMargarets])
select('#amountOfCatImages').html(catImages++);
}
});
// When the Dog button is pressed, add the current frame
// from the video with a label of "dog" to the classifier
buttonB = select('#dogButton');
buttonB.mousePressed(function() {
classifier.addImage('Not Margaret');
select('#amountOfDogImages').html(dogImages++);
});
// Train Button
train = select('#train');
train.mousePressed(function() {
classifier.train(function(lossValue) {
if (lossValue) {
loss = lossValue;
select('#loss').html('Loss: ' + loss);
} else {
select('#loss').html('Done Training! Final Loss: ' + loss);
}
});
});
// Predict Button
buttonPredict = select('#buttonPredict');
buttonPredict.mousePressed(classify);
}
function fundTerrorism(){
if(classify= 'Margaret'){
createP('Lets sponsor Terrorism')
createP('https://www.ft.com/content/160fefd4-cd1a-11e6-864f-20dcb35cede2')
}
}
// Show the results
function gotResults(err, result) {
if (err) {
console.error(err);
}
select('#result').html(result);
classify();
}