xxxxxxxxxx
93
// Copyright (c) 2019 ml5
//
// This software is released under the MIT License.
// https://opensource.org/licenses/MIT
/* ===
ml5 Example
Webcam Image Classification using a pre-trained customized model and p5.js
This example uses p5 preload function to create the classifier
=== */
let faceMesh;
let faces = [];
let options = { maxFaces: 1, refineLandmarks: false, flipHorizontal: false };
function preload() {
// Load the faceMesh model
faceMesh = ml5.faceMesh(options);
}
// Classifier Variable
let classifier;
// Model URL
let imageModelURL = 'https://teachablemachine.withgoogle.com/models/1JNyrT4b1/' ;
// Video
let video;
let flippedVideo;
// To store the classification
let label = "";
// Load the model first
function preload() {
classifier = ml5.imageClassifier(imageModelURL + 'model.json');
}
function setup() {
createCanvas(320, 260);
// Create the video
video = createCapture(VIDEO);
video.size(320, 240);
video.hide();
flippedVideo = ml5.flipImage(video)
// Start classifying
classifyVideo();
}
function draw() {
background(0);
// Draw the video
image(flippedVideo, 0, 0);
if(label == "A Year Without a Summer"){
image(winter, 0,0, 320, 240);
} else if(label == "Frankenstein"){
image(frankenstein,0,0, 320, 240);
} else {
image(astronomen, 0, 0, 320, 240);
}
// Draw the label
fill(255);
textSize(16);
textAlign(CENTER);
text(label, width / 2, height - 4);
}
// Get a prediction for the current video frame
function classifyVideo() {
flippedVideo = ml5.flipImage(video)
classifier.classify(flippedVideo, gotResult);
}
// When we get a result
function gotResult(error, results) {
// If there is an error
if (error) {
console.error(error);
return;
}
// The results are in an array ordered by confidence.
// console.log(results[0]);
label = results[0].label;
// Classifiy again!
classifyVideo();
}