xxxxxxxxxx
87
let handPose;
let video;
let hands = [];
let targetLabel;
let brain;
let state = 'waiting';
function preload() {
// Load the handPose model
handPose = ml5.handPose({ flipped: true });
}
function setup() {
createCanvas(640, 480);
// Create the webcam video and hide it
video = createCapture(VIDEO, { flipped: true });
video.size(640, 480);
video.hide();
// start detecting hands from the webcam video
handPose.detectStart(video, gotHands);
let options = {
inputs: 42,
outputs: 4,
task: "classification",
debug: true,
};
brain = ml5.neuralNetwork(options);
}
function draw() {
// Draw the webcam video
image(video, 0, 0, width, height);
if (hands.length > 0) {
for (let i = 0; i < hands.length; i++) {
let hand = hands[i];
let inputs = [];
for (let j = 0; j < hand.keypoints.length; j++) {
let keypoint = hand.keypoints[j];
let x = keypoint.x;
let y = keypoint.y;
inputs.push(x);
inputs.push(y);
noStroke();
circle(x, y, 10);
}
let target = [targetLabel];
brain.addData(inputs, target);
// console.log(inputs);
}
}
}
// Callback function for when handPose outputs data
function gotHands(results) {
// save the output to the hands variable
hands = results;
}
function keyPressed() {
if(key == 's'){
brain.saveData('shapes');
}
if(key == 't'){
targetLabel = 'triangle';
} else if(key == 'c'){
targetLabel = 'circle';
} else if(key == 'r'){
targetLabel = 'rectangle';
} else {
targetLabel = key;
}
console.log(targetLabel);
setTimeout(function () {
console.log("collecting");
state = "collecting";
setTimeout(function(){
console.log('not collecting');
state = 'waiting';
}, 10000);
}, 10000);
}