xxxxxxxxxx
130
let classifier;
let handPose;
let video;
let hands = [];
let classification = "";
let isModelLoaded = false;
function preload() {
// Load the handPose model
handPose = ml5.handPose({ flipped: true });
}
function setup() {
createCanvas(640, 480);
textAlign(CENTER);
// Create the webcam video and hide it
video = createCapture(VIDEO, { flipped: true });
video.size(640, 480);
video.hide();
// For this example to work across all browsers
// "webgl" or "cpu" needs to be set as the backend
ml5.setBackend("webgl");
// Set up the neural network
let classifierOptions = {
task: "classification",
};
classifier = ml5.neuralNetwork(classifierOptions);
const modelDetails = {
model: "model/shapes_trained.json",
metadata: "model/shapes_trained_meta.json",
weights: "model/shapes_trained.weights.bin",
};
classifier.load(modelDetails, modelLoaded);
// Start the handPose detection
handPose.detectStart(video, gotHands);
}
function draw() {
//Display the webcam video
image(video, 0, 0, width, height);
/* Draw the handPose keypoints */
/*
if (hands.length > 0) {
for (let i = 0; i < hands.length; i++) {
let hand = hands[i];
let inputs = [];
for (let j = 0; j < hand.keypoints.length; j++) {
let keypoint = hand.keypoints[j];
let x = keypoint.x;
let y = keypoint.y;
noStroke();
circle(x, y, 10);
}
}
}
*/
// If the model is loaded, make a classification and display the result
if (isModelLoaded && hands[0]) {
let inputData = flattenHandData();
classifier.classify(inputData, gotClassification);
textSize(32);
if (classification == "circle") {
noFill();
strokeWeight(3);
stroke(0, 255, 0);
circle(width / 2, height / 2, width / 2);
noStroke();
fill(0, 255, 0);
text(classification, width/2, height/2);
} else if (classification == "triangle") {
noFill();
strokeWeight(3);
stroke(0, 255, 0);
triangle(
width / 2,
height / 4,
width / 2 + width / 4,
height / 2 + height / 4,
width / 4,
height / 2 + height / 4
);
noStroke();
fill(0, 255, 0);
text(classification, width/2, height/2);
}
} else {
noStroke();
fill(0, 255, 0);
text("loading...", width/2, height/2);
}
}
function flattenHandData() {
for (let i = 0; i < hands.length; i++) {
let hand = hands[i];
let handData = [];
for (let j = 0; j < hand.keypoints.length; j++) {
let keypoint = hand.keypoints[j];
handData.push(keypoint.x);
handData.push(keypoint.y);
}
return handData;
}
}
// Callback function for when handPose outputs data
function gotHands(results) {
hands = results;
}
// Callback function for when the classifier makes a classification
function gotClassification(results) {
classification = results[0].label;
}
// Callback function for when the pre-trained model is loaded
function modelLoaded() {
isModelLoaded = true;
}