xxxxxxxxxx
252
let u = [];
let f = [];
let K = [];
let P = [];
let w = [];
let charge = [];
let r = 0;
let E =0;
let c=[];
let norm = [];
let N=100;
let N2=50;
let D=15;
let D1=5;
let C=1;
let dt;
let dt1;
let h;
let t=1;
let d=0.05;
let M=7;
let M2=8;
let R=1.05;
function setup() {
createCanvas(400, 400);
h=20/N;
dt=d*pow(h,2);
dt1=dt/2;
for (var m=1;m<M2;m++){
w[m]=[];
u[m]=[];
c[m]=1;
charge[m]=1;
P[m]=[];
norm[m]=0;
}
for (var m=1;m<M2;m++){
for (var i=0;i<N+1;i++){
w[m][i]=[];
u[m][i]=[];
K[i]=[];
P[m][i]=[];
for (var j=0;j<N+1;j++){
w[m][i][j]=[];
u[m][i][j]=[];
K[i][j]=[];
P[m][i][j]=[];
for (var k=0;k<N+1;k++){
w[m][i][j][k]=0;
u[m][i][j][k]=0;
K[i][j][k]=0;
P[m][i][j][k]=0;
}
}
}
}
for (var i=0;i<N+1;i++){
for (var j=0;j<N+1;j++){
for (var k=0;k<N+1;k++){
r=pow((i-N2)*h,2)+pow((j-N2)*h,2)+pow((k-N2+D)*h,2)+0.25*h*h;
r=sqrt(r);
if (r>R & i-j<0 & i<N2){
u[1][i][j][k]=exp(-r);
w[1][i][j][k]=1;
}
if (r>R & i-j>0 & j<N2){
u[2][i][j][k]=exp(-r);
w[2][i][j][k]=1;
}
if (r>R & i>N2 & j>N2){
u[3][i][j][k]=exp(-r);
w[3][i][j][k]=1;
}
K[i][j][k]=3/r;
P[4][i][j][k]=1.5/r;
P[5][i][j][k]=1.5/r;
P[6][i][j][k]=1.5/r;
r=pow((i-N2+D)*h,2)+pow((j-N2)*h,2)+pow((k-N2)*h,2)+0.25*h*h;
r=sqrt(r);
if (i<N2-D/2){
u[4][i][j][k]=exp(-r);
w[4][i][j][k]=1;
}
K[i][j][k]= K[i][j][k]+1/r;
P[1][i][j][k]=0.5/r;
P[2][i][j][k]=0.5/r;
P[3][i][j][k]=0.5/r;
r=pow((i-N2-D)*h,2)+pow((j-N2)*h,2)+pow((k-N2)*h,2)+0.25*h*h;
r=sqrt(r);
if (i>N2+D/2){
u[5][i][j][k]=exp(-r);
w[5][i][j][k]=1;
}
K[i][j][k]= K[i][j][k]+1/r;
P[1][i][j][k]=0.5/r;
P[2][i][j][k]=0.5/r;
P[3][i][j][k]=0.5/r;
r=pow((i-N2)*h,2)+pow((j-N2+D)*h,2)+pow((k-N2)*h,2)+0.25*h*h;
r=sqrt(r);
if (j<N2-D/2){
u[6][i][j][k]=exp(-r);
w[6][i][j][k]=1;
}
K[i][j][k]= K[i][j][k]+1/r;
P[1][i][j][k]=0.5/r;
P[2][i][j][k]=0.5/r;
P[3][i][j][k]=0.5/r;
}
}
}
}
function draw() {
background(220);
noStroke();
if (t<100){
t=t+1;
E=0;
for (var i=1;i<N;i++){
for (var j=1;j<N;j++){
for (var k=1;k<N;k++){
for (var m=1;m<M;m++){
c[m]=0;
for (var n=1;n<M;n++){
if (n!=m){
c[m]=c[m]-u[n][i][j][k];
}
c[m]=0.5*(c[m]+u[m][i][j][k]);
}
}
for (var m=1;m<M;m++){
r=pow((i-N2)*h,2)+pow((j-N2)*h,2)+pow((k-N2+D)*h,2)+0.25*h*h;
if (r>R){
//Front tracking of electron characteristic functions
w[m][i][j][k]=w[m][i][j][k]+dt*abs(c[m])*(w[m][i+1][j][k]+w[m][i-1][j][k]-6*w[m][i][j][k]+w[m][i][j+1][k]+w[m][i][j-1][k]+w[m][i][j][k+1]+w[m][i][j][k-1])/pow(h,2)+ 5*dt*c[m]*sqrt(pow((w[m][i+1][j][k]-w[m][i-1][j][k])/h,2)+pow((w[m][i][j+1][k]-w[m][i][j-1][k])/h,2)+pow((w[m][i][j][k+1]-w[m][i][j][k-1])/h,2));
}
//Update of electron density functions//
//Hom Neumann problem for each electron//
u[m][i][j][k]=u[m][i][j][k]+0.5*d*((u[m][i+1][j][k]-u[m][i][j][k])*(w[m][i+1][j][k]+w[m][i][j][k])/2-(u[m][i][j][k]-u[m][i-1][j][k])*(w[m][i][j][k]+w[m][i-1][j][k])/2)+0.5*d*((u[m][i][j+1][k]-u[m][i][j][k])*(w[m][i][j+1][k]+w[m][i][j][k])/2-(u[m][i][j][k]-u[m][i][j-1][k])*(w[m][i][j][k]+w[m][i][j-1][k])/2)+0.5*d*((u[m][i][j][k+1]-u[m][i][j][k])*(w[m][i][j][k+1]+w[m][i][j][k])/2-(u[m][i][j][k]-u[m][i][j][k-1])*(w[m][i][j][k]+w[m][i][j][k-1])/2)+dt*(K[i][j][k]-2*P[m][i][j][k])*u[m][i][j][k]*w[m][i][j][k];
//Solve Poisson equation for electron potentials//
c[m]=0;
for (var n=1;n<M;n++){
if (n!=m){
c[m]=c[m]+pow(u[n][i][j][k],2);
}
}
P[m][i][j][k]=P[m][i][j][k]+dt*(P[m][i+1][j][k]-6*P[m][i][j][k]+P[m][i-1][j][k]+P[m][i][j+1][k]+P[m][i][j-1][k]+P[m][i][j][k+1]+P[m][i][j][k-1])/pow(h,2)+2*PI*dt*c[m];
//Compute energy//
if (w[m][i][j][k]>0.5){
E = E+0.5*(pow(u[m][i+1][j][k]-u[m][i][j][k],2)+pow(u[m][i][j+1][k]-u[m][i][j][k],2)+pow(u[m][i][j][k+1]-u[m][i][j][k],2))*h;
}
E=E+(P[m][i][j][k]-K[i][j][k])*pow(u[m][i][j][k],2)*pow(h,3);
}
}
}
}
//Normalisation of charge densities//
for (var m=1;m<M;m++){
norm[m] = 0;
for (var i=1;i<N;i++){
for (var j=1;j<N;j++){
for (var k=1;k<N;k++){
norm[m] = norm[m] + pow(u[m][i][j][k],2)*pow(h,3);
}
}
}
for (var i=1;i<N;i++){
for (var j=1;j<N;j++){
for (var k=1;k<N;k++){
u[m][i][j][k]=u[m][i][j][k]/sqrt(norm[m]);
}
}
}
}
}
//Plots//
//if (t/10 - floor(t/10)>0.8){
for (var m=1;m<M;m++){
for (var i=1;i<N;i++){
for (var j=1;j<N;j++){
fill(255,0,0,1000*u[m][i][j][N2-D]);
square(4*i,4*j,4);
}
}
}
// }
fill(255,255,255,255);
fill(0);
circle(200-D*4,200,10);
circle(200+D*4,200,10);
for (var i=0;i<N;i++){
for (m=1;m<M;m++){
fill(0);
ellipse(4*i,200-100*w[m][i][N2][N2],4);
fill(255,255,0,255);
ellipse(4*i,300-400*u[m][i][N2][N2],4);
fill(0,255,255,255);
ellipse(4*i,300-100*P[m][i][N2][N2],3);
}
fill(0,0,255,255);
ellipse(4*i,300-30*K[i][N2][N2],4);
}
fill(0);
text(t,100,378);
text(E+9/(sqrt(2)*D*h)+1/(2*D*h)+sqrt(2)/(D*h)+5.61,140,395);
text("time step =",10,378);
text("Dissociation Energy =",10,395);
text("(ref -0.446 Hartree)",270,395);
text("NH3 N kernel +3 R=1.05",5,20);
text("u = sum_i u_i, w_i char function for supp u_i non-overlap",5,40);
text("Minimise E = sum_i integral (0.5*(w_i*|grad(u_i)|^2-K*u_i^2+P_i*u_i^2)dx",5,60);
text("over u_i with continuity of u across free bdy updated by front track w_i",5,80);
text("H_i = - 0.5*Laplacian - K(x) + 2*P_i(x)",5,120);
text("K(x) kernel potential, P_i(x) electron potentials",5,100);
text("P_1(x) = integral dy*u_2(y)^2/(2*|x-y|) acting on u_1 et cet",5,160);
text("Compute E by time stepping du_i/dt = -H_iu_i + normalisation",5,140);
text("Compute P_1 by solving -Laplacian P_1 =2*PI*(u_2^2) et cet",5,180);
text("green: u_1,u_2, blue: potentials, black/red: charac func, mid cross cut,",10,360);
text("Update charac func w_i by front track: dw_i/dt+jump*abs(grad w_i)",5,320);
}