xxxxxxxxxx
59
//Complete Code - Ready to read and begin experimenting.
console.log('ml5 version:', ml5.version)
var mobilenet
var theImg
var slider
//ADDING
var images = ['cat.jpg', 'robin.jpg', 'mouse.jpg', 'dog.jpg'] //add in code along?
function setup(){
var c =createCanvas(400,400)
c.parent("forCanvas")
slider = createSlider(0,images.length-1,1) //adjust for length of array in code along?
slider.parent("forCanvas")
slider.position(75,300)
slider.size(170)
theImg = createImg(images[1], "Test Image", "", imageReady);
theImg.hide()
mobilenet = ml5.imageClassifier('MobileNet', modelReady);
}
// function draw(){
// }
function mouseReleased(){
//change image based on slider position once an array of images has been added
theImg = createImg(images[slider.value()], "Test Image", "", imageReady);
theImg.hide()
mobilenet = ml5.imageClassifier('MobileNet', modelReady);
}
//Don't touch these!
function modelReady(){
console.log("model ready")
mobilenet.predict(theImg, gotResults)
}
function gotResults(error, results){
if (error){
console.error(error)
}
else{
var label = results[0].label
var confidence = Math.round(results[0].confidence*100)
console.log(label, confidence)
forResults.innerHTML = `<h3>I think that is a ${label} with a confidence of ${confidence}%.</h3>`
}
}
function imageReady(){
image(theImg,0,0,200,200)
}