xxxxxxxxxx
130
class Ball {
constructor(x, y, r) {
this.position = createVector(x, y);
this.velocity = p5.Vector.random2D();
this.velocity.mult(3);
this.radius = r;
this.m = this.radius * 0.1;
}
update() {
this.position.add(this.velocity);
}
checkBoundaryCollision() {
if (this.position.x > width-this.radius) {
this.position.x = width-this.radius;
this.velocity.x *= -1;
} else if (this.position.x < this.radius) {
this.position.x = this.radius;
this.velocity.x *= -1;
} else if (this.position.y > height-this.radius) {
this.position.y = height-this.radius;
this.velocity.y *= -1;
} else if (this.position.y < this.radius) {
this.position.y = this.radius;
this.velocity.y *= -1;
}
}
checkCollision(other) {
// Get distances between the balls components
let distanceVect = p5.Vector.sub(other.position, this.position);
// Calculate magnitude of the vector separating the balls
let distanceVectMag = distanceVect.mag();
// Minimum distance before they are touching
let minDistance = this.radius + other.radius;
if (distanceVectMag < minDistance) {
let distanceCorrection = (minDistance-distanceVectMag) / 2.0;
let d = distanceVect.copy();
let correctionVector = d.normalize().mult(distanceCorrection);
other.position.add(correctionVector);
this.position.sub(correctionVector);
// get angle of distanceVect
let theta = distanceVect.heading();
// precalculate trig values
let sine = sin(theta);
let cosine = cos(theta);
/* bTemp will hold rotated ball positions. You
just need to worry about bTemp[1] position*/
let bTemp = [
createVector(), createVector()
];
/* this ball's position is relative to the other
so you can use the vector between them (bVect) as the
reference point in the rotation expressions.
bTemp[0].position.x and bTemp[0].position.y will initialize
automatically to 0.0, which is what you want
since b[1] will rotate around b[0] */
bTemp[1].x = cosine * distanceVect.x + sine * distanceVect.y;
bTemp[1].y = cosine * distanceVect.y - sine * distanceVect.x;
// rotate Temporary velocities
let vTemp = [
createVector(), createVector()
];
vTemp[0].x = cosine * this.velocity.x + sine * this.velocity.y;
vTemp[0].y = cosine * this.velocity.y - sine * this.velocity.x;
vTemp[1].x = cosine * other.velocity.x + sine * other.velocity.y;
vTemp[1].y = cosine * other.velocity.y - sine * other.velocity.x;
/* Now that velocities are rotated, you can use 1D
conservation of momentum equations to calculate
the final velocity along the x-axis. */
let vFinal = [
createVector(), createVector
];
// final rotated velocity for b[0]
vFinal[0].x = ((this.m - other.m) * vTemp[0].x + 2 * other.m * vTemp[1].x) / (this.m + other.m);
vFinal[0].y = vTemp[0].y;
// final rotated velocity for b[0]
vFinal[1].x = ((other.m - this.m) * vTemp[1].x + 2 * this.m * vTemp[0].x) / (this.m + other.m);
vFinal[1].y = vTemp[1].y;
// hack to avoid clumping
bTemp[0].x += vFinal[0].x;
bTemp[1].x += vFinal[1].x;
/* Rotate ball positions and velocities back
Reverse signs in trig expressions to rotate
in the opposite direction */
// rotate balls
let bFinal = [
createVector(), createVector()
];
bFinal[0].x = cosine * bTemp[0].x - sine * bTemp[0].y;
bFinal[0].y = cosine * bTemp[0].y + sine * bTemp[0].x;
bFinal[1].x = cosine * bTemp[1].x - sine * bTemp[1].y;
bFinal[1].y = cosine * bTemp[1].y + sine * bTemp[1].x;
// update balls to screen position
other.position.x = this.position.x + bFinal[1].x;
other.position.y = this.position.y + bFinal[1].y;
this.position.add(bFinal[0]);
// update velocities
this.velocity.x = cosine * vFinal[0].x - sine * vFinal[0].y;
this.velocity.y = cosine * vFinal[0].y + sine * vFinal[0].x;
other.velocity.x = cosine * vFinal[1].x - sine * vFinal[1].y;
other.velocity.y = cosine * vFinal[1].y + sine * vFinal[1].x;
}
}
display() {
noStroke();
fill(204);
ellipse(this.position.x, this.position.y, this.radius*2);
}
}