xxxxxxxxxx
95
/**
* This sketch demonstrates how you can think of a PVector
* as representing a line from the center of a shape to one
* of its vertices. You can use this idea to more easily draw
* shapes with rotational symmetry.
*
* Instructions:
* Press the UP and DOWN arrows to change the number of vertices.
* SPACE switches from polygon to star mode
* MouseX position will determine the outer 'radius' of the shape
* MouseY position will determine the inner 'radius' if in star mode.
*/
let vx;
let isPolygonMode = true;
let numEdges = 6;
let angle;
let outerRadius;
let innerRadius;
function setup() {
createCanvas(600, 600);
colorMode(HSB, 360, 1, 1, 1);
noStroke();
}
function draw() {
// Calculate a pleasing fill / bg combination based on
// the current mouse position.
let hBg = map(mouseX, 0, width, 0, 360);
let hFill = (hBg + 180) % 360;
let sBg = map(mouseY, 0, height, 0.4, 0.6);
let sFill = 1.0 - sBg;
background(hBg, sBg, 1.0);
fill(hFill, sFill, 1.0);
// Figure out the angle from center of the screen to mouse position
let rot = atan2(mouseY - height / 2, mouseX - width / 2);
translate(width / 2, height / 2);
rotate(rot);
if (isPolygonMode) {
drawPolygon();
} else {
drawStar();
}
}
function drawPolygon() {
angle = 360 / numEdges;
outerRadius = abs(mouseX - width / 2);
vx = createVector(outerRadius, 0);
beginShape();
for (let i = 0; i < numEdges; i++) {
vertex(vx.x, vx.y);
vx.rotate(radians(angle));
}
endShape(CLOSE);
}
function drawStar() {
angle = radians(180 / numEdges);
outerRadius = abs(mouseX - width / 2);
innerRadius = abs(mouseY - height / 2);
vx = createVector(outerRadius, 0);
beginShape();
for (let i = 0; i < numEdges; i++) {
vx.setMag(outerRadius);
vertex(vx.x, vx.y);
vx.rotate(angle);
vx.setMag(innerRadius);
vertex(vx.x, vx.y);
vx.rotate(angle);
}
endShape(CLOSE);
}
function keyPressed() {
if (keyCode == UP_ARROW){
numEdges += 1;
} else if (keyCode == DOWN_ARROW){
numEdges -= 1;
} else if (key == ' ') {
isPolygonMode = !isPolygonMode;
}
return false;
}