xxxxxxxxxx
56
let stars = [];
let web = [];
let circles = [];
let lines = [];
let tris = [];
let n = 100;
let shapeClassifier;
function preload() {
for (let i = 0; i < n; i++) {
stars[i] = loadImage("data/stars/stars_"+i+".png");
web[i] = loadImage("data/web/web_"+i+".png");
circles[i] = loadImage("data/circles/circles_"+i+".png");
lines[i] = loadImage("data/lines/lines_"+i+".png");
tris[i] = loadImage("data/tris/tris_"+i+".png");
}
}
function setup() {
createCanvas(128, 96);
background(255);
pixelDensity(1);
let options = {
inputs: [128, 96, 4],
task: "imageClassification",
debug: true,
};
shapeClassifier = ml5.neuralNetwork(options);
for (let i = 0; i < n; i++){
shapeClassifier.addData({ image: tris[i] }, { label: "triangle" });
shapeClassifier.addData({ image: stars[i] }, { label: "star" });
shapeClassifier.addData({ image: web[i] }, { label: "web" });
shapeClassifier.addData({ image: circles[i] }, { label: "circle" });
shapeClassifier.addData({ image: lines[i] }, { label: "line" });
}
shapeClassifier.normalizeData();
shapeClassifier.train({epochs: 100}, finishedTraining);
}
function finishedTraining() {
console.log("finishedTraining");
shapeClassifier.save();
}
// function draw() {
// image(circles[4],0,0,width,height);
// }