xxxxxxxxxx
84
// Based on Dan Shiffman's example
// (would this work directly in px?)
let data = [];
// general formula for a line: y = mx + b
// ( Gottfried learned this as y = kx + d)
let m = 1; // this is called the "slope" or "gradient"
let b = 0; // this is called the "intercept"
function setup() {
createCanvas(400, 400);
}
function draw() {
background(0);
for (let i=0; i < data.length; i++) {
let x = map(data[i].x, 0, 1, 0, width);
let y = map(data[i].y, 0, 1, height, 0);
fill(255);
noStroke();
ellipse(x, y, 6, 6);
}
drawLine();
}
function mousePressed() {
let point = {
x: map(mouseX, 0, width, 0, 1),
y: map(mouseY, 0, height, 1, 0)
};
data.push(point);
linearRegression();
}
function drawLine () {
// from the left side of the canvas
let x1 = 0;
let y1 = m * x1 + b;
// to the right side
let x2 = 1;
let y2 = m * x2 + b;
// convert them to pixels
x1 = map(x1, 0, 1, 0, width);
y1 = map(y1, 0, 1, height, 0);
x2 = map(x2, 0, 1, 0, width);
y2 = map(y2, 0, 1, height, 0);
stroke(0, 0, 255);
line(x1, y1, x2, y2);
}
function linearRegression() {
// sum up all the x and y values
let sum_x = 0;
let sum_y = 0;
for (let i=0; i < data.length; i++) {
sum_x += data[i].x;
sum_y += data[i].y;
}
// to calculate their average
let avg_x = sum_x / data.length;
let avg_y = sum_y / data.length;
// this is following the formula for calculating m & b:
let num = 0; // the numerator part of our division
let den = 0; // the denominator part of our division
for (let i=0; i < data.length; i++) {
let x = data[i].x;
let y = data[i].y;
num += (x - avg_x) * (y - avg_y);
den += (x - avg_x) * (x - avg_x);
}
m = num / den;
b = avg_y - m * avg_x;
}