xxxxxxxxxx
72
// Machine Learning for Artists and Designers
// NYUSH F24 - gohai
let lines; // array of individual lines
let input; // the entire text
let probabilities;
let textMargin = 20;
let textX = textMargin;
let textY = textMargin;
function preload() {
lines = loadStrings("text.txt");
frameRate(5);
}
function setup() {
createCanvas(400, 400);
background(220);
textSize(18);
input = lines.join(" ");
probabilities = analyze(input);
//console.log(probabilities);
}
function draw() {
let nextChar = generate(probabilities);
//console.log(nextChar);
// print character to canvas
if (textX + textWidth(nextChar) >= width - textMargin) {
textY = textY + textAscent() + textDescent();
textX = textMargin;
}
text(nextChar, textX, textY);
textX = textX + textWidth(nextChar);
}
function analyze(str) {
let counts = {};
// count how often each character occurs
for (let i = 0; i < str.length; i++) {
let chr = str[i];
if (counts[chr]) {
counts[chr]++; // seen before, add one
} else {
counts[chr] = 1; // start with count 1
}
}
// turn the count into probability (0-1)
for (let chr in counts) {
counts[chr] = counts[chr] / str.length;
}
return counts;
}
function generate(probabilities) {
// pick a random number 0..1
let rand = random();
let sum = 0;
for (let chr in probabilities) {
// check if we landed "inside" the probability
// of the current character (higher probability
// == more chance for a match)
if (sum + probabilities[chr] >= rand) {
return chr;
}
sum = sum + probabilities[chr];
}
}