xxxxxxxxxx
66
// Getting started with transformers.js in p5.js
// Gottfried Haider
// based on https://editor.p5js.org/jonathan.ai/sketches/O8mvwJtfp
let model; // this variable will contain the model loaded in preload()
let result; // gotResults() will store the most recent result there
// asynchronously load transformers.js and instantiate model
async function preload() {
let transformers = await import(
"https://cdn.jsdelivr.net/npm/@xenova/transformers@2"
);
console.log("transformers.js version " + transformers.env.version);
// the task (e.g. "sentiment-analysis") and specific model to use for it
// (optional) go into the next line
model = await transformers.pipeline("sentiment-analysis");
// see https://github.com/xenova/transformers.js?tab=readme-ov-file#supported-tasksmodels for a list of possibilities
console.log("Model loaded");
modelReady();
}
async function predict() {
// everything but the last argument to predict() is a parameter for the model
let modelArgs = [];
for (let i = 0; i < arguments.length - 1; i++) {
modelArgs.push(arguments[i]);
}
let out = await model(modelArgs);
// but the last argument is the callback function to call
if (typeof arguments[arguments.length - 1] == "function") {
arguments[arguments.length - 1](out);
}
}
function setup() {
createCanvas(400, 400);
}
function draw() {
background(255);
textAlign(CENTER);
if (result) {
text(
"Sentiment is " +
result[0].label +
" with confidence " +
nf(result[0].score * 100, 0, 2) + "%",
width / 2,
height / 2
);
} else {
text("Loading...", width / 2, height / 2);
}
}
function modelReady() {
predict("I hate it when it rains", gotResults);
}
function gotResults(data) {
console.log("Model returned", data);
result = data;
}