xxxxxxxxxx
112
// L to load sine dataset
// S to save/download dataset
// Enter to train
// Click to predict
let data = [];
let nn;
let training = true;
let predictingX = 0;
let predictedY = 0;
function setup() {
createCanvas(400, 400);
/*
The layer definition for regression is
supposedly:
let layers: [
{
type: 'dense',
units: this.options.hiddenUnits,
activation: 'relu',
},
{
type: 'dense',
activation: 'sigmoid',
},
];
*/
let options = {
task: 'regression',
inputs: ['x'],
outputs: ['y'],
debug: true,
learningRate: 0.2, // supposedly default
hiddenUnits: 16, // supposedly default
};
nn = ml5.neuralNetwork(options);
}
function draw() {
background(0);
noStroke();
// training data
let points = nn.neuralNetworkData.data.raw;
for (let i=0; i < points.length; i++) {
let x = map(points[i].xs.x, 0, 1, 0, width);
let y = map(points[i].ys.y, 0, 1, height, 0);
fill(255);
ellipse(x, y, 6, 6);
}
// prediction
fill(0, 0, 255);
let x = map(predictingX, 0, 1, 0, width);
let y = map(predictedY, 0, 1, height, 0);
ellipse(x, y, 6, 6);
}
function mousePressed() {
let x = map(mouseX, 0, width, 0, 1);
let y = map(mouseY, 0, height, 1, 0);
if (training) {
// artificially generate some points around the mouse position
for (let i=0; i < 10; i++) {
nn.addData({ x: x+random(-0.02,0.02) }, { y: y+random(-0.02,0.02) });
}
} else {
predictingX = x;
nn.predict({ x: x }, handleResults);
}
}
function keyPressed() {
if (keyCode == ENTER) {
nn.normalizeData();
let options = {
epochs: 32, // supposedly default
batchSize: 12, // supposedly default
};
nn.train(options, finishedTraining);
} else if (key == 's' || key == 'S') {
nn.saveData();
} else if (key == 'l' || key == 'L') {
nn.loadData('uploaded.json');
}
}
function train() {
}
function finishedTraining() {
console.log('Finished training');
training = false;
}
function handleResults(error, result) {
if (error) {
console.error(error);
} else {
predictedY = result[0].y;
console.log('Predicted y ' + predictedY + ' for x ' + predictingX);
}
}