xxxxxxxxxx
46
// Initialize the Image Classifier method with DoodleNet.
let classifier;
// Two variable to hold the label and confidence of the result
let clearButton;
let resultsP;
let canvas;
function preload() {
classifier = ml5.imageClassifier("DoodleNet");
}
function setup() {
canvas = createCanvas(280, 280);
background(255);
classifier.classifyStart(canvas, gotResult);
// Create 'label' and 'confidence' div to hold results
resultsP = createP("label");
// Create a clear canvas button
clearButton = createButton("clear canvas");
clearButton.mousePressed(clearCanvas);
}
function clearCanvas() {
background(255);
}
function draw() {
strokeWeight(16);
stroke(0);
if (mouseIsPressed) {
line(pmouseX, pmouseY, mouseX, mouseY);
}
}
// A function to run when we get any errors and the results
function gotResult(results) {
// The results are in an array ordered by confidence.
// console.log(results);
// Show the first label and confidence
let label = results[0].label;
let confidence = results[0].confidence;
resultsP.html(label + " " + nf(confidence, 0, 2));
}