xxxxxxxxxx
58
// Initialize the Image Classifier method with DoodleNet.
let classifier;
// Two variable to hold the label and confidence of the result
let labelSpan;
let confidenceSpan;
let clearButton;
let canvas;
function preload() {
classifier = ml5.imageClassifier('DoodleNet');
}
function setup() {
canvas = createCanvas(280, 280);
background(255);
classifier.classify(canvas, gotResult);
// Create a clear canvas button
clearButton = select("#clearBtn");
clearButton.mousePressed(clearCanvas);
// Create 'label' and 'confidence' div to hold results
labelSpan = select("#label");
confidenceSpan = select("#confidence");
}
function clearCanvas() {
background(255);
}
function draw() {
strokeWeight(16);
stroke(0);
if (mouseIsPressed) {
line(pmouseX, pmouseY, mouseX, mouseY);
}
}
// A function to run when we get any errors and the results
function gotResult(error, results) {
// Display error in the console
if (error) {
console.error(error);
return;
}
// The results are in an array ordered by confidence.
// console.log(results);
// Show the first label and confidence
labelSpan.html(results[0].label);
confidenceSpan.html(floor(100 * results[0].confidence));
classifier.classify(canvas, gotResult);
}