xxxxxxxxxx
155
/*
* Based on Unfolding the Dragon (Coding Challenge 185)
* https://www.youtube.com/watch?v=MazpwQNdJYQ
*/
let segments = [];
let endSegment;
let zoom = 1;
let targetZoom = 1;
let amt = 0;
let angle1, angle2, goldenRatio, r1, r2;
let generationCount = 0;
let maxGenerations = 12;
function setup() {
createCanvas(500, 500);
// Calculate constants for the golden ratio dragon curve
goldenRatio = (1 + Math.sqrt(5)) / 2;
r1 = Math.pow(1 / goldenRatio, 1 / goldenRatio);
r2 = r1 ** 2;
angle1 = Math.acos((1 + r1 ** 2 - r1 ** 4) / (2 * r1));
angle2 = Math.acos((1 + r1 ** 4 - r1 ** 2) / (2 * r2));
// Define the start and end points of the initial segment
let b = createVector(0, 0);
let a = createVector(0, 250);
// Create the first segment using points 'a' and 'b'
endSegment = new Segment(a, b, b);
endSegment.completed = true;
// Add the initial segment to the segments array
segments.push(endSegment);
}
let firstTime = true;
function nextGeneration() {
let newSegments = [];
for (let s of segments) {
// Duplicate each segment
let newS = s.duplicate(endSegment.a);
// If it's the first segment, set the origin to be 'b'
if (firstTime) {
newS.origin = endSegment.b;
firstTime = false;
}
// Add the new segment to the newSegments array
newSegments.push(newS);
}
// Update the endSegment to be the first of the new segments
endSegment = newSegments[0];
// Append the new segments to the existing segments array
segments = segments.concat(newSegments);
}
function draw() {
background(255);
translate(width / 2, height / 2);
// Update the zoom only if the number of generations is less than maxGenerations
if (generationCount < maxGenerations) {
let newZoom = lerp(zoom, targetZoom, amt);
scale(newZoom);
zoom = newZoom; // Update the zoom level
} else {
scale(zoom); // Keep the final zoom level
}
amt += 0.01;
for (let s of segments) {
if (!s.completed) {
s.update();
}
s.show();
}
if (amt >= 1) {
for (let s of segments) {
s.completed = true;
}
// Stop after 12 generations
if (generationCount < maxGenerations) {
nextGeneration();
generationCount++; // Increment the generation counter
targetZoom = zoom / (0.85 * goldenRatio); // Update targetZoom for the next generation
}
amt = 0;
//noLoop();
}
//console.log(amt)
}
// Golden ratio Dragon curve
// https://larryriddle.agnesscott.org/ifs/heighway/goldenDragon.htm
class Segment {
constructor(a, b, origin) {
// Initial positions of the segment
this.startA = a;
this.startB = b;
this.a = a.copy();
this.b = b.copy();
this.completed = false;
this.angle = 0;
this.origin = origin.copy();
this.dilatation = 1; // Needed for shrinking segments
}
show() {
stroke(0);
strokeWeight(2 / zoom);
line(this.a.x, this.a.y, this.b.x, this.b.y);
}
duplicate(origin) {
return new Segment(this.a.copy(), this.b.copy(), origin);
}
update() {
// Rotation angle based on the golden ratio calculation
let targetAngle = PI - angle1 - angle2;
this.angle = lerp(0, targetAngle, amt);
this.dilatation = lerp(1, r1, amt);
// Calculate vectors from origin to the start and end points
let va = p5.Vector.sub(this.startA, this.origin);
let vb = p5.Vector.sub(this.startB, this.origin);
// Apply dilation with factor r1 only to the last segment after rotation
va.mult(this.dilatation);
vb.mult(this.dilatation);
// Rotate the vectors by the calculated angle
va.rotate(-this.angle);
vb.rotate(-this.angle);
// Update the segment's current endpoints based on the rotated (and possibly dilated) vectors
this.a = p5.Vector.add(this.origin, va);
this.b = p5.Vector.add(this.origin, vb);
}
}