xxxxxxxxxx
122
//incomplete conversion to YOLOv4 hosted model.
let img, button, caption;
let bounding_boxes, categories, scores;
let boxX = 0;
let boxY = 0;
let boxW = 0;
let boxH = 0;
let boxCategory;
let score;
let totalBoxes = [];
let status;
let label;
const model = new rw.HostedModel({
url: "https://yolov4-cf1b013e.hosted-models.runwayml.cloud/v1/",
token: "VuJvDNbu3EyY/QsAHNah0g==",
});
if (typeof(model) == 'undefined') {
console.log('model inactive')
} else {
console.log('model active')
document.querySelectorAll('#inactive')[0].classList.add('hidden')
}
async function checkModel() {
document.querySelector('body').classList.add('loading')
if (typeof(model) != 'undefined') {
await model.waitUntilAwake();
document.querySelector('body').classList.remove('loading')
}
}
function setup() {
// create canvas
createCanvas(720, 360);
img = loadImage("birds.jpeg")
button = createButton("send image").mousePressed(sendInput);
checkModel();
}
function draw() {
background(220);
image(img, 0, 0, 720, 360);
drawBoxes();
//this is how to check if a label is detected
//change "bird" to whatever label you want to detect
if (label === "bird") {
//prompt an output
//draw a shape/show some text
console.log("show output");
fill(0);
noStroke();
text("this is my sentence if its a bird", 10, 50);
}
}
function drawBoxes() {
let x, y, w, h;
if (status != undefined) {
for (var i = 0; i < totalBoxes.length; i++) {
let boxes = [];
boxes = totalBoxes[i];
boxX = boxes[0];
boxY = boxes[1];
boxW = boxes[2];
boxH = boxes[3];
x = boxX * width;
y = boxY * height;
w = (boxW * width) - x;
h = (boxH * height) - y;
noFill();
stroke(0, 255, 0);
rect(x, y, w, h);
text(boxCategory[i] + "\n" + nfc(score[i], 3), x, y + 20);
label = boxCategory[i];//read each category label
}
}
}
async function sendInput() {
// load pixels of image file onto a canvas
img.loadPixels();
// create a base64-encoded version of the image
let imageString = img.canvas.toDataURL('image/jpeg');
// format the data to send to RunwayML, see Network tab > Input Specification
const data = {
image: imageString
};
// make a request to model in RunwayML
if (typeof(model) != 'undefined') {
const result = await model.query(data)
gotData(result)
}
}
function gotData(result) {
const {
results
} = result;
status = true;
console.log(result);
//the output results for a YOLO model.
totalBoxes = result.bounding_boxes;
boxCategory = result.categories;
score = result.scores;
}