xxxxxxxxxx
65
// The Nature of Code
// Daniel Shiffman
// http://natureofcode.com
// Koch Curve
// A class to manage the list of line segments in the snowflake pattern
function KochFractal() {
this.start = createVector(0,height-20); // A p5.Vector for the start
this.end = createVector(width,height-20); // A p5.Vector for the end
this.lines = []; // An array to keep track of all the lines
this.count = 0;
this.nextLevel = function() {
// For every line that is in the arraylist
// create 4 more lines in a new arraylist
this.lines = this.iterate(this.lines);
this.count++;
}
this.restart = function() {
this.count = 0; // Reset count
this.lines = []; // Empty the array list
this.lines.push(new KochLine(this.start,this.end)); // Add the initial line (from one end p5.Vector to the other)
}
this.restart();
this.getCount = function() {
return this.count;
}
// This is easy, just draw all the lines
this.render = function() {
for(var i = 0; i < this.lines.length; i++) {
this.lines[i].display();
}
}
// This is where the **MAGIC** happens
// Step 1: Create an empty arraylist
// Step 2: For every line currently in the arraylist
// - calculate 4 line segments based on Koch algorithm
// - add all 4 line segments into the new arraylist
// Step 3: Return the new arraylist and it becomes the list of line segments for the structure
// As we do this over and over again, each line gets broken into 4 lines, which gets broken into 4 lines, and so on. . .
this.iterate = function(before) {
var now = []; // Create emtpy list
for(var i = 0; i < this.lines.length; i++) {
var l = this.lines[i];
// Calculate 5 koch p5.Vectors (done for us by the line object)
var a = l.kochA();
var b = l.kochB();
var c = l.kochC();
var d = l.kochD();
var e = l.kochE();
// Make line segments between all the p5.Vectors and add them
now.push(new KochLine(a,b));
now.push(new KochLine(b,c));
now.push(new KochLine(c,d));
now.push(new KochLine(d,e));
}
return now;
}
}