xxxxxxxxxx
84
// ml5.js: Train Your Own Neural Network
// The Coding Train / Daniel Shiffman
// https://thecodingtrain.com/Courses/ml5-beginners-guide/6.1-ml5-train-your-own.html
// https://youtu.be/8HEgeAbYphA
// https://editor.p5js.org/codingtrain/sketches/zwGahux8a
let model;
let targetLabel = "C";
let state = "collection";
function setup() {
createCanvas(400, 400);
let options = {
inputs: ["x", "y"],
outputs: ["A", "B", "C"],
task: "classification",
debug: "true",
};
model = ml5.neuralNetwork(options);
background(255);
}
function keyPressed() {
if (key == "t") {
state = "training";
console.log("starting training");
model.normalizeData();
let options = {
epochs: 200,
};
model.train(options, whileTraining, finishedTraining);
} else {
targetLabel = key.toUpperCase();
}
}
function whileTraining(epoch, loss) {
console.log(epoch);
}
function finishedTraining() {
console.log("finished training.");
state = "prediction";
}
function mousePressed() {
let inputs = {
x: mouseX,
y: mouseY,
};
if (state == "collection") {
let target = {
label: targetLabel,
};
model.addData(inputs, target);
stroke(0);
noFill();
ellipse(mouseX, mouseY, 24);
fill(0);
noStroke();
textAlign(CENTER, CENTER);
text(targetLabel, mouseX, mouseY);
} else if (state == "prediction") {
model.classify(inputs, gotResults);
}
}
function gotResults(error, results) {
if (error) {
console.error(error);
return;
}
stroke(0);
fill(0, 0, 255, 100);
circle(mouseX, mouseY, 24);
fill(0);
noStroke();
textAlign(CENTER, CENTER);
let label = results[0].label;
text(label, mouseX, mouseY);
}