xxxxxxxxxx
179
// Test with Lissajous curves
let c1;
let c2;
let ex = [];
let wk = new Float32Array(256);
let repeats = 30;
let neuralNetwork;
let rate = 0.10;
function setup() {
createCanvas(400, 400);
neuralNetwork = new FFBNetBP(256, 4, 4, 2);
c1 = color("gold");
c2 = color("rgb(179,228,179)");
for (let i = 0; i < 8; i++) {
ex[i] = new Float32Array(256);
}
for (let i = 0; i < 127; i++) {
// Training data
let t = (i * 2 * PI) / 127;
ex[0][2 * i] = sin(t);
ex[0][2 * i + 1] = sin(2 * t);
ex[1][2 * i] = sin(2 * t);
ex[1][2 * i + 1] = sin(t);
ex[2][2 * i] = sin(2 * t);
ex[2][2 * i + 1] = sin(3 * t);
ex[3][2 * i] = sin(3 * t);
ex[3][2 * i + 1] = sin(2 * t);
ex[4][2 * i] = sin(3 * t);
ex[4][2 * i + 1] = sin(4 * t);
ex[5][2 * i] = sin(4 * t);
ex[5][2 * i + 1] = sin(3 * t);
ex[6][2 * i] = sin(2 * t);
ex[6][2 * i + 1] = sin(5 * t);
ex[7][2 * i] = sin(5 * t);
ex[7][2 * i + 1] = sin(2 * t);
}
textSize(16);
}
function draw() {
background(0);
loadPixels();
for (let i = 0; i < repeats; i++) {
for (let j = 0; j < ex.length; j++) {
neuralNetwork.train(ex[j], ex[j], rate);
}
}
fill(c1);
for (let i = 0; i < 8; i++) {
for (let j = 0; j < 255; j += 2) {
set(25 + i * 40 + 18 * ex[i][j], 44 + 18 * ex[i][j + 1], c1);
}
}
for (let i = 0; i < 8; i++) {
neuralNetwork.recall(wk, ex[i]);
for (let j = 0; j < 255; j += 2) {
set(25 + i * 40 + 18 * wk[j], 104 + 18 * wk[j + 1], c2);
}
}
updatePixels();
text("Training Data", 5, 20);
text("Recall Autoassociative", 5, 80);
text("Iterations: " + frameCount * repeats, 5, 150);
}
class FFBNetBP {
// vecLen must be 4,8,16,32.....
// widthBy must be 1,2,4,8....
// depth 1 to ...
// hardLimit is around 2, less for deep nets
constructor(vecLen, widthBy, depth, hardLimit) {
this.vecLen = vecLen;
this.widthBy = widthBy;
this.depth = depth;
this.hardLimit = hardLimit;
this.n = vecLen * widthBy;
this.params = new Float32Array(2 * this.n * depth);
this.surface = new Float32Array(this.n * depth);
this.flips = new Float32Array(this.n);
this.work = new Float32Array(this.n);
for (let i = 0; i < this.n; i++) {
this.flips[i] = random(-1, 1) < 0 ? -1 : 1;
}
for (let i = 0; i < this.params.length; i++) {
this.params[i] = random(-2,2);
}
}
recall(result, inputvec) {
for (let i = 0; i < this.n; i++) {
this.work[i] = this.flips[i] * inputvec[i & (this.vecLen - 1)]; //vecLen-1 acts as a binary mask
}
let paramIdx = 0; // parameter index
whtN(this.work); // Walsh Hadamard transform
for (let i = 0; i < this.depth; i++) {
for (let j = 0; j < this.n; j++) {
const signBit = this.work[j] < 0 ? 0 : 1;
this.work[j] *= this.params[paramIdx + signBit];
paramIdx += 2;
}
whtN(this.work);
}
for (let i = 0; i < this.vecLen; i++) {
result[i] = this.work[i];
}
}
train(target, inputvec, rate) {
for (let i = 0; i < this.n; i++) {
this.work[i] = this.flips[i] * inputvec[i & (this.vecLen - 1)]; //vecLen-1 acts as a binary mask
}
let paramIdx = 0; // parameter index
whtN(this.work); // Walsh Hadamard transform
for (let i = 0; i < this.depth; i++) {
for (let j = 0; j < this.n; j++) {
this.surface[j + i * this.n] = this.work[j]; // save WHT outputs
}
for (let j = 0; j < this.n; j++) {
const signBit = this.work[j] < 0 ? 0 : 1;
this.work[j] *= this.params[paramIdx + signBit];
paramIdx += 2;
}
whtN(this.work);
}
for (let i = 0; i < this.vecLen; i++) {
this.work[i] = (target[i] - this.work[i]) * rate; //error by learning rate
}
for (let i = this.vecLen; i < this.n; i++) {
// clear upper section
this.work[i] = 0;
}
for (let i = this.depth - 1; i >= 0; i--) {
whtN(this.work); // invert error back
const surIdx = i * this.n;
paramIdx=2*i*this.n;
for (let j = 0; j < this.n; j++) {
let x = this.surface[surIdx + j];
let adjust = x * this.work[j]; // weight update
const signBit = x < 0 ? 0 : 1;
let w = this.params[paramIdx + signBit];
w += adjust;
if (w > this.hardLimit) w = this.hardLimit;
if (w < -this.hardLimit) w = -this.hardLimit;
this.params[paramIdx + signBit] = w;
if (w < 0) this.work[j] = -this.work[j]; //Back Propagation!
paramIdx+=2;
}
}
}
}
// Walsh Hadamard transform scaled to leave vector magnitued unchanged
function whtN(vec) {
const n=vec.length;
const sc=1.0/sqrt(n);
for(let i=0;i<n;i+=2){
const a=vec[i];
const b=vec[i+1];
vec[i]=(a+b)*sc;
vec[i+1]=(a-b)*sc;
}
let hs = 2;
while (hs < n) {
let i = 0;
while (i < n) {
const j = i + hs;
while (i < j) {
const a = vec[i];
const b = vec[i + hs];
vec[i] = a + b;
vec[i + hs] = a - b;
i += 1;
}
i += hs;
}
hs += hs;
}
}