xxxxxxxxxx
67
// ml5.js: Classifying Drawings with DoodleNet (Mouse)
// The Coding Train / Daniel Shiffman
// https://thecodingtrain.com/learning/ml5/9.1-doodlenet.html
// https://youtu.be/ABN_DWnM5GQ
// Template: https://editor.p5js.org/codingtrain/sketches/AHgkwgPdc
// Mouse: https://editor.p5js.org/codingtrain/sketches/6LLnGY1VY
// Video: https://editor.p5js.org/codingtrain/sketches/fxFKOn3il
let clearButton;
let canvas;
let sSlider;
let doodleClassifier;
let resultsDiv;
function setup() {
canvas = createCanvas(400, 400);
clearButton = createButton('clear');
sSlider = createSlider(1, 20, 4, 1);
clearButton.mousePressed(clearCanvas);
background(255);
doodleClassifier = ml5.imageClassifier('DoodleNet', modelReady);
resultsDiv = createDiv('model loading');
function preventBehavior(e) {
e.preventDefault();
//e.stopPropagation()
};
canvas.elt.addEventListener("touchmove", preventBehavior, {passive: false});
}
function modelReady() {
console.log('model loaded');
doodleClassifier.classify(canvas, gotResults);
}
function gotResults(error, results) {
if (error) {
console.error(error);
return;
}
let content = "";
for (let i = 0; i < results.length; i++) {
content += `<div style="font-size: ${(1*(1/(i+1)))}em">${results[i].label}
${nf(100 * results[i].confidence, 2, 1)}%</div>`
}
resultsDiv.html(content);
doodleClassifier.classify(canvas, gotResults);
}
function clearCanvas() {
background(255);
}
function draw() {
if (mouseIsPressed) {
strokeWeight(sSlider.value());
line(mouseX, mouseY, pmouseX, pmouseY);
}
}